Today's nightmare

This commit is contained in:
Rudi klein 2025-01-10 19:27:37 +01:00
parent d6b2ca92f5
commit 11ce0a109b
2 changed files with 147 additions and 38 deletions

View File

@ -1,5 +1,6 @@
import math import math
from adafruit_servokit import ServoKit from adafruit_servokit import ServoKit
from time import sleep
kit = ServoKit(channels=16) kit = ServoKit(channels=16)
MIN_PULSE = 400 # Defines angle 80, for current PID setup -- 550 MIN_PULSE = 400 # Defines angle 80, for current PID setup -- 550
@ -14,13 +15,17 @@ kit.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
# Pulse width expressed as fraction between 0.0 (`min_pulse`) and 1.0 (`max_pulse`). # Pulse width expressed as fraction between 0.0 (`min_pulse`) and 1.0 (`max_pulse`).
# For conventional servos, corresponds to the servo position as a fraction # For conventional servos, corresponds to the servo position as a fraction
# of the actuation range. Is None when servo is disabled (pulsewidth of 0ms) # of the actuation range. Is None when servo is disabled (pulsewidth of 0ms)
# kit.servo[0].fraction = 0.5 # kit.servo[0].angle = 110
# property angle: float | None # property angle: float | None
# The servo angle in degrees. Must be in the range 0 to actuation_range. # The servo angle in degrees. Must be in the range 0 to actuation_range.
# Is None when servo is disabled. # Is None when servo is disabled.
while True:
kit.servo[0].angle = 90 kit.servo[0].angle = 110
sleep(1)
kit.servo[0].angle = 90
sleep(0.1)
print("test")

View File

@ -1,3 +1,5 @@
from csv import excel
from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor
import board # General board pin mapper import board # General board pin mapper
from adafruit_servokit import ServoKit # Servo libraries for PWM driver board from adafruit_servokit import ServoKit # Servo libraries for PWM driver board
@ -9,6 +11,7 @@ import csv # CSV handling
from datetime import datetime # Date and time formatting from datetime import datetime # Date and time formatting
from time import sleep # Sleep/pause from time import sleep # Sleep/pause
import pandas as pd import pandas as pd
from datetime import datetime
# Variables to control sensor # Variables to control sensor
TRIGGER_PIN = board.D4 # GPIO pin xx TRIGGER_PIN = board.D4 # GPIO pin xx
@ -16,22 +19,23 @@ ECHO_PIN = board.D17 # GPIO pin xx
PIN_TIMEOUT: float = 0.1 # Timeout for echo wait -- don't change PIN_TIMEOUT: float = 0.1 # Timeout for echo wait -- don't change
RUN_TIMEOUT: float = 0.0 # Sleep time in function RUN_TIMEOUT: float = 0.0 # Sleep time in function
MIN_DISTANCE: int = 6 # Minimum sensor distance to be considered valid (1 on bar) MIN_DISTANCE: int = 6 # Minimum sensor distance to be considered valid (1 on bar)
MAX_DISTANCE: int = 39 # Maximum sensor distance to be considered valid (35 on bar) MAX_DISTANCE: int = 40 # Maximum sensor distance to be considered valid (35 on bar)
# Variables to control servo # Variables to control servo
KIT = ServoKit(channels=16) # Define the type of board (8, 16) KIT = ServoKit(channels=16) # Define the type of board (8, 16)
MIN_PULSE: int = 400 # Defines angle 80, for current PID setup MIN_PULSE: int = 400 # Defines angle 80, for current PID setup
MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup
OFFSET: int = -1
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE) KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
# Variables to control logging. # Variables to control logging.
LOG: bool = True # Log data to files LOG: bool = True # Log data to files
SCREEN: bool = True # Log data to screen SCREEN: bool = True # Log data to screen
DEBUG: bool = True # More data to display DEBUG: bool = False # More data to display
TWIN_MODE: bool = False TWIN_MODE: bool = False
# Control the number of samples for single distance measurement (average from burst) # Control the number of samples for single distance measurement (average from burst)
MAX_SAMPLES: int = 10 MAX_SAMPLES: int = 1
# Control the potentiometer # Control the potentiometer
# Description: # Description:
@ -56,8 +60,8 @@ pcf_out = AnalogOut(pcf, PCF.OUT)
pcf_out.value = PCF_VAL pcf_out.value = PCF_VAL
# Variables to control PID values (PID formula tweaks) # Variables to control PID values (PID formula tweaks)
p_value: float = 2.0 p_value: float = 0.5
i_value: float = 0.0 i_value: float = 0.01
d_value: float = 0.0 d_value: float = 0.0
# Initial variables, used in pid_calculations() # Initial variables, used in pid_calculations()
@ -65,20 +69,23 @@ i_result: float = 0.0
previous_time: float = 0.0 previous_time: float = 0.0
previous_error: float = 0.0 previous_error: float = 0.0
# Variables to assist pid_calculations()
current_time: float = 0
integral: float = 0
# Error sum array # Error sum array
error_sum_array: list = [] error_sum_max: int = 10
error_sum_array: list = [0]*error_sum_max
error_sum_counter: int = 0 error_sum_counter: int = 0
error_sum_max: int = 100
# Digital twin # Digital twin
previous_speed:float = 0.0 previous_speed:float = 0.0
start_loop = True start_loop = True
previous_measurement: float = 0.0 previous_measurement: float = 0.0
#maximum angle the servo can move away from steady position. With 10 the range is between 80 and 100, with steady at 90
max_angle = 6
# servo slower
current_angle:int = 90
# Write data to any of the logfiles # Write data to any of the logfiles
def log_data(data_file: str, data_line: str, remark: str|None): def log_data(data_file: str, data_line: str, remark: str|None):
log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3] log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
@ -91,6 +98,8 @@ def log_data(data_file: str, data_line: str, remark: str|None):
data_writer.writerow([log_stamp,data_line, remark]) data_writer.writerow([log_stamp,data_line, remark])
def read_distance_sensor(): def read_distance_sensor():
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
# Init array, used in read_distance_sensor() # Init array, used in read_distance_sensor()
sample_array: list = [] sample_array: list = []
@ -110,7 +119,10 @@ def read_distance_sensor():
log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None
# print("Distance_in_range: ", distance) if SCREEN else None # print("Distance_in_range: ", distance) if SCREEN else None
if max_samples == 1:
median_distance = distance
mean_timestamp = float(datetime.strftime(datetime.now(),'%Y%m%d%H%M%S.%f')[:-3])
else:
sample_array.append(distance) sample_array.append(distance)
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(), if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
'%Y%m%d%H%M%S.%f')[:-3]) '%Y%m%d%H%M%S.%f')[:-3])
@ -123,22 +135,32 @@ def read_distance_sensor():
median_distance: float = st.median(sample_array) median_distance: float = st.median(sample_array)
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float]) mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
print("Distance_median: ", median_distance) if SCREEN else None print("Distance_median: ", median_distance) if SCREEN else None
print("Timestamp_mean: ", mean_timestamp) if SCREEN else None print("Timestamp_mean: ", mean_timestamp) if DEBUG else None
print("Distance_in_range: ", distance) if SCREEN else None print("Distance_in_range: ", distance) if SCREEN else None
data_line = str(sample_array) + ',' + str(median_distance)
log_data(data_file="sensor_array", data_line= data_line,
remark="") if LOG else None
print("Distance_in_range_rounded: ", round(distance, 4)) if SCREEN else None
samples: int = samples + 1 samples: int = samples + 1
else: else:
log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None log_data(data_file="sensor", data_line=str(distance), remark="Distance_out_of_range") if LOG else None
print("Distance_out_of_range: ", round(distance, 4)) if SCREEN else None print("Distance_out_of_range: ", round(distance, 4)) if SCREEN else None
except RuntimeError: except RuntimeError:
log_data(data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None log_data(data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None
print("Distance_timed_out") if SCREEN else None print("Distance_timed_out") if SCREEN else None
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="read_distance_sensor") if LOG else None
return median_distance, mean_timestamp return median_distance, mean_timestamp
def read_setpoint(): def read_setpoint():
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
while True: while True:
raw_value: int = pcf_in_0.value raw_value: int = pcf_in_0.value
@ -149,15 +171,26 @@ def read_setpoint():
cm_rounded: int = int(round(scaled_value * POT_PCM, 0)) cm_rounded: int = int(round(scaled_value * POT_PCM, 0))
if SCREEN: if DEBUG:
print('Scaled_rounded = ' , round(scaled_value, 4), ' CM_rounded= ', cm_rounded) print('Scaled_rounded = ' , round(scaled_value, 4), ' CM_rounded= ', cm_rounded)
print('Scaled_raw= ' , scaled_value, ' CM_raw= ', int(scaled_value * POT_PCM)) print('Scaled_raw= ' , scaled_value, ' CM_raw= ', int(scaled_value * POT_PCM))
print('setpoing in cm: ', cm_rounded) if SCREEN else None
sleep(POT_INT) sleep(POT_INT)
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="read_setpoint") if LOG else None
return cm_rounded return cm_rounded
def calculate_acceleration(): def calculate_acceleration():
print("calc is active")
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
position_1, timestamp_1 = read_distance_sensor() position_1, timestamp_1 = read_distance_sensor()
position_2, timestamp_2 = read_distance_sensor() position_2, timestamp_2 = read_distance_sensor()
position_3, timestamp_3 = read_distance_sensor() position_3, timestamp_3 = read_distance_sensor()
@ -168,10 +201,15 @@ def calculate_acceleration():
print(initial_velocity, " ", final_velocity, " ", acceleration) if SCREEN else None print(initial_velocity, " ", final_velocity, " ", acceleration) if SCREEN else None
data_line: str = str(initial_velocity) + ',' + str(final_velocity) + ',' + str(acceleration) data_line: str = str(position_1) + ',' + str(position_2) + ',' + str(position_3) + ',' + str(initial_velocity) + ',' + str(final_velocity) + ',' + str(acceleration)
log_data(data_file="acceleration", data_line=data_line, remark="") if LOG else None log_data(data_file="acceleration", data_line=data_line, remark="") if LOG else None
def pid_calculations(setpoint): end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="calculate_acceleration") if LOG else None
def pid_calculations():
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
global i_result, previous_time, previous_error # Can not be annotated with :float, because variables are global. global i_result, previous_time, previous_error # Can not be annotated with :float, because variables are global.
global error_sum_counter, error_sum_array # counter for error_sum_array and error_sum_array itself global error_sum_counter, error_sum_array # counter for error_sum_array and error_sum_array itself
@ -181,6 +219,7 @@ def pid_calculations(setpoint):
else: else:
measurement, measurement_time = read_distance_sensor() measurement, measurement_time = read_distance_sensor()
setpoint = read_setpoint()
error = setpoint - measurement error = setpoint - measurement
if previous_time is None: if previous_time is None:
@ -196,29 +235,58 @@ def pid_calculations(setpoint):
previous_error = error previous_error = error
previous_time = measurement_time previous_time = measurement_time
#function to set the 2 max angles. Or set the angle to a specific number = pid_result * max movement + correction
if pid_result >= max_angle: # if PID result is greater than 1, set to 1. 1 = max upward angle
output_angle = (90 + max_angle)
elif pid_result <= -max_angle: # if PID result is greater than 1, set to 1. 1 = max downward angle
output_angle = (90-max_angle)
elif -max_angle < pid_result < max_angle:
output_angle = pid_result + 90
else:
output_angle = 90
log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result) log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result)
log_data(data_file="pid", data_line=log_line, remark="") if LOG else None log_data(data_file="pid", data_line=log_line, remark="") if LOG else None
if SCREEN: if DEBUG:
print("P_result: ", p_result) print("P_result: ", p_result)
print("D_result: ", d_result) print("D_result: ", d_result)
print("I_result: ", i_result) print("I_result: ", i_result)
print("PID_result: ", pid_result) print("PID_result: ", pid_result)
if error_sum_counter <= error_sum_max: if error_sum_counter <= error_sum_max-2:
error_sum_counter = error_sum_counter + 1 error_sum_counter = error_sum_counter + 1
else: else:
error_sum_counter = 0 error_sum_counter = 0
return pid_result print("error sum counter", error_sum_counter) if DEBUG else None
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="pid_calculations") if LOG else None
output_angle = round(output_angle)
return output_angle
def control_server_angle(angle): def control_server_angle(angle):
KIT.servo[0].angle = angle # Set angle start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
servo_angle = angle + OFFSET
KIT.servo[0].angle = servo_angle # Set angle
log_line = str(angle) log_line = str(angle)
log_data(data_file="servo", data_line=log_line, remark="") if LOG else None log_data(data_file="servo", data_line=log_line, remark="") if LOG else None
print(angle) if SCREEN else None print("angle: ", servo_angle) if SCREEN else None
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="control_server_angle") if LOG else None
def digital_twin(pid_angle): def digital_twin(pid_angle):
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
global start_loop global start_loop
measurement_time = float(datetime.strftime(datetime.now(),'%Y%m%d%H%M%S.%f')[:-3]) measurement_time = float(datetime.strftime(datetime.now(),'%Y%m%d%H%M%S.%f')[:-3])
@ -239,4 +307,40 @@ def digital_twin(pid_angle):
print(measurement) print(measurement)
print(new_speed) print(new_speed)
print(previous_speed) print(previous_speed)
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="digital_twin") if LOG else None
return measurement, measurement_time return measurement, measurement_time
def servo_slower():
start_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
global current_angle
pid_angle = pid_calculations()
if (pid_angle - current_angle) > 5:
servo_angle = current_angle + 5
elif (pid_angle - current_angle) < -5:
servo_angle = current_angle - 5
else:
servo_angle = pid_angle
current_angle = servo_angle
end_time = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f'))
data_line = str(start_time - end_time)
log_data(data_file="function", data_line=data_line, remark="servo_slower") if LOG else None
return servo_angle
try:
with open("pid-balancer_" + "time_file.txt", "w") as time_file:
time_file.write(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3])
KIT.servo[0].angle = 90
while True:
calculate_acceleration()
# control_server_angle(pid_calculations())
except RuntimeError:
print("bbbb")