Code additions for functions
This commit is contained in:
parent
c92be8b49a
commit
dad15449b4
@ -20,7 +20,7 @@ kit.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
|
|||||||
# The servo angle in degrees. Must be in the range 0 to actuation_range.
|
# The servo angle in degrees. Must be in the range 0 to actuation_range.
|
||||||
# Is None when servo is disabled.
|
# Is None when servo is disabled.
|
||||||
|
|
||||||
# kit.servo[0].angle = 90
|
kit.servo[0].angle = 90
|
||||||
|
|
||||||
|
|
||||||
# property throttle: float
|
# property throttle: float
|
||||||
|
|||||||
@ -8,29 +8,25 @@ import statistics as st # Mean and median calculatio
|
|||||||
import csv # CSV handling
|
import csv # CSV handling
|
||||||
from datetime import datetime # Date and time formatting
|
from datetime import datetime # Date and time formatting
|
||||||
from time import sleep # Sleep/pause
|
from time import sleep # Sleep/pause
|
||||||
import os # OS environment
|
|
||||||
|
|
||||||
file_stamp = os.environ.get("PID_TIMESTAMP") # Get file timestamp from OS variable
|
|
||||||
|
|
||||||
# Variables to control sensor
|
# Variables to control sensor
|
||||||
TRIGGER_PIN = board.D4 # GPIO pin xx
|
TRIGGER_PIN = board.D4 # GPIO pin xx
|
||||||
ECHO_PIN = board.D17 # GPIO pin xx
|
ECHO_PIN = board.D17 # GPIO pin xx
|
||||||
TIMEOUT: float = 0.1 # Timout for echo wait
|
PIN_TIMEOUT: float = 0.1 # Timeout for echo wait -- don't change
|
||||||
MIN_DISTANCE: int = 4 # Minimum sensor distance to considered valid
|
RUN_TIMEOUT: float = 0.0 # Sleep time in function
|
||||||
MAX_DISTANCE: int = 40 # Maximum sensor distance to considered valid
|
MIN_DISTANCE: int = 4 # Minimum sensor distance to be considered valid (1 on bar)
|
||||||
|
MAX_DISTANCE: int = 39 # Maximum sensor distance to be considered valid (35 on bar)
|
||||||
|
|
||||||
# Variables to control servo
|
# Variables to control servo
|
||||||
# MIN_PULSE = 750 # Defines angle 0, actual minimum for this servo
|
|
||||||
# MAX_PULSE = 2150 # Defines angle 180, actual maximum for this servo
|
|
||||||
KIT = ServoKit(channels=16) # Define the type of board (8, 16)
|
KIT = ServoKit(channels=16) # Define the type of board (8, 16)
|
||||||
MIN_PULSE: int = 400 # Defines angle 80, for current PID setup
|
MIN_PULSE: int = 400 # Defines angle 80, for current PID setup
|
||||||
MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup
|
MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup
|
||||||
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
|
KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE)
|
||||||
|
|
||||||
# Variables to control logging.
|
# Variables to control logging.
|
||||||
LOG: bool = False # Log data to files
|
LOG: bool = True # Log data to files
|
||||||
SCREEN: bool = True # Log data to screen
|
SCREEN: bool = True # Log data to screen
|
||||||
DEBUG: bool = False # More data to display
|
DEBUG: bool = True # More data to display
|
||||||
|
|
||||||
# Control the number of samples for single distance measurement (average from burst)
|
# Control the number of samples for single distance measurement (average from burst)
|
||||||
MAX_SAMPLES: int = 10
|
MAX_SAMPLES: int = 10
|
||||||
@ -57,12 +53,6 @@ pcf_in_0 = AnalogIn(pcf, PCF.A0)
|
|||||||
pcf_out = AnalogOut(pcf, PCF.OUT)
|
pcf_out = AnalogOut(pcf, PCF.OUT)
|
||||||
pcf_out.value = PCF_VAL
|
pcf_out.value = PCF_VAL
|
||||||
|
|
||||||
# Variables to assist PID calculations
|
|
||||||
current_time: float = 0
|
|
||||||
integral: float = 0
|
|
||||||
time_prev: float = -1e-6
|
|
||||||
error_prev: float = 0
|
|
||||||
|
|
||||||
# Variables to control PID values (PID formula tweaks)
|
# Variables to control PID values (PID formula tweaks)
|
||||||
p_value: float = 2.0
|
p_value: float = 2.0
|
||||||
i_value: float = 0.0
|
i_value: float = 0.0
|
||||||
@ -73,34 +63,42 @@ i_result: float = 0.0
|
|||||||
previous_time: float = 0.0
|
previous_time: float = 0.0
|
||||||
previous_error: float = 0.0
|
previous_error: float = 0.0
|
||||||
|
|
||||||
|
# Variables to assist pid_calculations()
|
||||||
|
current_time: float = 0
|
||||||
|
integral: float = 0
|
||||||
|
|
||||||
# Init array, used in read_distance_sensor()
|
# Init array, used in read_distance_sensor()
|
||||||
sample_array: list = []
|
sample_array: list = []
|
||||||
|
|
||||||
# Write data to any of the logfiles
|
# Write data to any of the logfiles
|
||||||
def log_data(file_stamp: str, data_file: str, data_line: str, remark: str|None):
|
def log_data(data_file: str, data_line: str, remark: str|None):
|
||||||
log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
|
log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]
|
||||||
|
|
||||||
|
with open("pid-balancer_" + "time_file.txt", "r") as time_file:
|
||||||
|
file_stamp: str = time_file.readline()
|
||||||
|
|
||||||
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
|
with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file:
|
||||||
data_writer = csv.writer(data_file)
|
data_writer = csv.writer(data_file)
|
||||||
data_writer.writerow([log_stamp,data_line, remark])
|
data_writer.writerow([log_stamp,data_line, remark])
|
||||||
|
|
||||||
def read_distance_sensor():
|
def read_distance_sensor():
|
||||||
|
|
||||||
# Do a burst (MAX_SAMPLES) of measurements, filter out the obvious wrong ones (too short or to long distance)
|
# Do a burst (MAX_SAMPLES) of measurements, filter out the obvious wrong ones (too short or to long a distance)
|
||||||
# Return the mean timestamp and median distance.
|
# Return the mean timestamp and median distance.
|
||||||
with hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar:
|
with hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=PIN_TIMEOUT) as sonar:
|
||||||
samples: int = 0
|
samples: int = 0
|
||||||
max_samples: int = MAX_SAMPLES
|
max_samples: int = MAX_SAMPLES
|
||||||
timestamp_last: float = 0.0
|
timestamp_last: float = 0.0
|
||||||
timestamp_first: float = 0.0
|
timestamp_first: float = 0.0
|
||||||
|
|
||||||
while samples != max_samples:
|
while samples != max_samples:
|
||||||
|
sleep(RUN_TIMEOUT)
|
||||||
try:
|
try:
|
||||||
distance: float = sonar.distance
|
distance: float = sonar.distance
|
||||||
if MIN_DISTANCE < distance < MAX_DISTANCE:
|
if MIN_DISTANCE < distance < MAX_DISTANCE:
|
||||||
|
|
||||||
log_data(file_stamp,"sensor", str(distance), None) if LOG else None
|
log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None
|
||||||
print("Distance: ", distance) if SCREEN else None
|
print("Distance_in_range: ", distance) if SCREEN else None
|
||||||
|
|
||||||
sample_array.append(distance)
|
sample_array.append(distance)
|
||||||
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
|
if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(),
|
||||||
@ -111,21 +109,19 @@ def read_distance_sensor():
|
|||||||
timestamp_first_float: float = float(timestamp_first)
|
timestamp_first_float: float = float(timestamp_first)
|
||||||
timestamp_last_float: float = float(timestamp_last)
|
timestamp_last_float: float = float(timestamp_last)
|
||||||
samples: int = samples + 1
|
samples: int = samples + 1
|
||||||
median_distance: list = st.median(sample_array)
|
median_distance: float = st.median(sample_array)
|
||||||
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
|
mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float])
|
||||||
|
|
||||||
print(median_distance) if SCREEN else None
|
print("Distance_median: ", median_distance) if SCREEN else None
|
||||||
print(mean_timestamp) if SCREEN else None
|
print("Timestamp_mean: ", mean_timestamp) if SCREEN else None
|
||||||
|
|
||||||
else:
|
else:
|
||||||
log_data(file_stamp=file_stamp, data_file="sensor", data_line=str(distance),
|
log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None
|
||||||
remark=None) if LOG else None
|
print("Distance_out_of_range: ", round(distance, 4)) if SCREEN else None
|
||||||
print("Distance: ", distance) if SCREEN else None
|
|
||||||
|
|
||||||
except RuntimeError:
|
except RuntimeError:
|
||||||
log_data(file_stamp=file_stamp, data_file="sensor", data_line="999.999",
|
log_data(data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None
|
||||||
remark="Timeout") if LOG and DEBUG else None
|
print("Distance_timed_out") if SCREEN else None
|
||||||
print("Timeout") if SCREEN else None
|
|
||||||
|
|
||||||
return median_distance, mean_timestamp
|
return median_distance, mean_timestamp
|
||||||
|
|
||||||
@ -136,16 +132,32 @@ def read_setpoint():
|
|||||||
scaled_value: float = (raw_value / PCF_VAL) * pcf_in_0.reference_voltage
|
scaled_value: float = (raw_value / PCF_VAL) * pcf_in_0.reference_voltage
|
||||||
|
|
||||||
log_line = str(scaled_value) + "," + str(raw_value) + "," + str("angle")
|
log_line = str(scaled_value) + "," + str(raw_value) + "," + str("angle")
|
||||||
log_data(file_stamp=file_stamp, data_file="potmeter", data_line=log_line, remark=None) if LOG else None
|
log_data(data_file="potmeter", data_line=log_line, remark="") if LOG else None
|
||||||
|
|
||||||
|
cm_rounded: int = int(round(scaled_value * POT_PCM, 0))
|
||||||
|
|
||||||
if SCREEN:
|
if SCREEN:
|
||||||
print('scaled= ' , round(scaled_value, 4), ' cm= ', int(round(scaled_value * POT_PCM, 0)))
|
print('Scaled_rounded = ' , round(scaled_value, 4), ' CM_rounded= ', cm_rounded)
|
||||||
|
print('Scaled_raw= ' , scaled_value, ' CM_raw= ', int(scaled_value * POT_PCM))
|
||||||
|
|
||||||
sleep(POT_INT)
|
sleep(POT_INT)
|
||||||
|
return cm_rounded
|
||||||
|
|
||||||
def calculate_velocity():
|
def calculate_acceleration():
|
||||||
|
|
||||||
velocity = "0"
|
position_1, timestamp_1 = read_distance_sensor()
|
||||||
log_data(file_stamp=file_stamp, data_file="velocity", data_line=velocity, remark=None) if LOG else None
|
position_2, timestamp_2 = read_distance_sensor()
|
||||||
|
position_3, timestamp_3 = read_distance_sensor()
|
||||||
|
|
||||||
|
initial_velocity: float = (position_1 - position_2) / (timestamp_2 - timestamp_1)
|
||||||
|
final_velocity: float = ((position_2 - position_3) / (timestamp_3 - timestamp_2))
|
||||||
|
acceleration: float = (final_velocity - initial_velocity) / (timestamp_3 - timestamp_1)
|
||||||
|
delta_t: float = timestamp_3 - timestamp_1
|
||||||
|
|
||||||
|
print(initial_velocity, " ", final_velocity, " ", acceleration) if SCREEN else None
|
||||||
|
|
||||||
|
data_line: str = str(initial_velocity) + ',' + str(final_velocity) + ',' + str(acceleration) + ',' + str(delta_t)
|
||||||
|
log_data(data_file="acceleration", data_line=data_line, remark="") if LOG else None
|
||||||
|
|
||||||
def pid_calculations(setpoint):
|
def pid_calculations(setpoint):
|
||||||
|
|
||||||
@ -162,18 +174,26 @@ def pid_calculations(setpoint):
|
|||||||
error_sum: float = error * 0.008 # sensor sampling number approximation.
|
error_sum: float = error * 0.008 # sensor sampling number approximation.
|
||||||
|
|
||||||
error_sum: float = error_sum + (error * (current_time - previous_time))
|
error_sum: float = error_sum + (error * (current_time - previous_time))
|
||||||
p_result = p_value * error
|
p_result: float = p_value * error
|
||||||
i_result = i_value * error_sum
|
i_result: float = i_value * error_sum
|
||||||
d_result = d_value * ((error - previous_error) / (measurement_time - previous_time))
|
d_result: float = d_value * ((error - previous_error) / (measurement_time - previous_time))
|
||||||
pid_result = offset_value + p_result + i_result + d_result
|
pid_result: float = offset_value + p_result + i_result + d_result
|
||||||
previous_error = error
|
previous_error = error
|
||||||
previous_time = measurement_time
|
previous_time = measurement_time
|
||||||
|
|
||||||
log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result)
|
log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result)
|
||||||
log_data(file_stamp=file_stamp, data_file="pid", data_line=log_line, remark=None) if LOG else None
|
log_data(data_file="pid", data_line=log_line, remark="") if LOG else None
|
||||||
|
|
||||||
|
if SCREEN:
|
||||||
|
print("P_result: ", p_result)
|
||||||
|
print("D_result: ", d_result)
|
||||||
|
print("I_result: ", i_result)
|
||||||
|
print("PDI_result: ", pid_result)
|
||||||
|
|
||||||
return pid_result
|
return pid_result
|
||||||
|
|
||||||
def control_server_angle(angle):
|
def control_server_angle(angle):
|
||||||
KIT.servo[0].angle = angle # Set angle
|
KIT.servo[0].angle = angle # Set angle
|
||||||
log_line = str(angle)
|
log_line = str(angle)
|
||||||
log_data(file_stamp=file_stamp, data_file="servo", data_line=log_line, remark=None) if LOG else None
|
log_data(data_file="servo", data_line=log_line, remark="") if LOG else None
|
||||||
|
print(angle) if SCREEN else None
|
||||||
7
main.py
7
main.py
@ -1,13 +1,12 @@
|
|||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
import control_functions as cf
|
import control_functions as cf
|
||||||
import os
|
|
||||||
|
|
||||||
os.environ["PID_TIMESTAMP"] = datetime.strftime(datetime.now(), '%Y%m%d%I%M') # Set file timestamp as OS variable.
|
|
||||||
|
|
||||||
|
with open("pid-balancer_" + "time_file.txt", "w") as time_file:
|
||||||
|
time_file.write(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3])
|
||||||
|
|
||||||
while True:
|
while True:
|
||||||
|
|
||||||
print(cf.read_setpoint())
|
cf.calculate_acceleration()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user