from adafruit_hcsr04 import HCSR04 as hcsr04 # PWM driver board for servo import board # PWM driver board for servo from adafruit_servokit import ServoKit # Servo libraries import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library import adafruit_pcf8591 as pcf8591 # AD/DA converter board for potentiometer import numpy as np # Number handling import pandas as pd # Data handling import matplotlib.pyplot as plt # Plotter handling from scipy.integrate import odeint # Integral calculations import statistics as st # Mean and median calculations import csv # CSV handling from datetime import datetime # Date and time formatting import time # Time formatting ######################################## Variables (start) ################################## # Variables to control sensor TRIGGER_PIN = board.D4 # GPIO pin xx ECHO_PIN = board.D17 # GPIO pin xx TIMEOUT: float = 0.1 # Timout for echo wait MIN_DISTANCE: int = 4 # Minimum sensor distance to considered valid MAX_DISTANCE: int = 40 # Maximum sensor distance to considered valid # Variables to control servo KIT = ServoKit(channels=16) # Define the type of board (8, 16) MIN_PULSE = 500 # Defines angle 0 MAX_PULSE = 2500 # Defines angle 180 KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE) # Variables to control logging. LOG: bool = True # Log data to files SCREEN: bool = True # Log data to screen DEBUG: bool = False # More data to display # Variables to assist PID calculations current_time = 0 integral = 0 time_prev = -1e-6 error_prev = 0 # Variables to control PID values (PID formula tweaks) p_value = 2 i_value = 0 d_value = 0 # Initial variables, used in pid_calculations() i_result = 0 previous_time = 0 previous_error = 0 # Init array, used in read_distance_sensor() sample_array: list = [] ######################################## Variables (end) ################################## def initial(): ... # Create timestamp strings for logs and screen def time_stamper(): log_timestamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3] file_timestamp: str = datetime.strftime(datetime.now(), '%Y%m%d%I%M') return log_timestamp, file_timestamp # Write data to any of the logfiles def log_data(fixed_file_stamp: str, data_file: str, data_line: float, remark: str|None): log_stamp, _ = time_stamper() with open("pid-balancer_" + data_file + "_data_" + fixed_file_stamp + ".csv", "a") as data_file: data_writer = csv.writer(data_file) data_writer.writerow([log_stamp,data_line, remark]) def read_distance_sensor(fixed_file_stamp): with (hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=TIMEOUT) as sonar): samples: int = 0 max_samples: int = 10 timestamp_last: float = 0.0 timestamp_first: float = 0.0 while samples != max_samples: try: distance: float = sonar.distance if MIN_DISTANCE < distance < MAX_DISTANCE: log_data(fixed_file_stamp,"sensor", distance, None) if LOG else None print("Distance: ", distance) if SCREEN else None sample_array.append(distance) if samples == 0: timestamp_first, _ = time_stamper() if samples == max_samples - 1: timestamp_last, _ = time_stamper() timestamp_first_float: float = float(timestamp_first) timestamp_last_float: float = float(timestamp_last) samples: int = samples + 1 median_distance: list = st.median(sample_array) mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float]) print(median_distance) if SCREEN else None print(mean_timestamp) if SCREEN else None else: log_data(fixed_file_stamp,"sensor", distance,"Ignored") if LOG and DEBUG else None print("Distance: ", distance) if SCREEN else None except RuntimeError: log_data(fixed_file_stamp, "sensor", 999.999, "Timeout") if LOG and DEBUG else None print("Timeout") if SCREEN else None return median_distance, mean_timestamp def read_setpoint(): ############# AnalogOut & AnalogIn Example ########################## # # This example shows how to use the included AnalogIn and AnalogOut # classes to set the internal DAC to output a voltage and then measure # it with the first ADC channel. # # Wiring: # Connect the DAC output to the first ADC channel, in addition to the # normal power and I2C connections # ##################################################################### i2c = board.I2C() pcf = PCF.PCF8591(i2c) pcf_in_0 = AnalogIn(pcf, PCF.A0) pcf_out = AnalogOut(pcf, PCF.OUT) while True: print("Setting out to ", 65535) pcf_out.value = 65535 raw_value = pcf_in_0.value scaled_value = (raw_value / 65535) * pcf_in_0.reference_voltage print("Pin 0: %0.2fV" % (scaled_value)) print("") time.sleep(1) def calculate_velocity(): ... def pid_calculations(setpoint): global i_result, previous_time, previous_error offset_value: int = 320 measurement, current_time = read_distance_sensor error: float = setpoint - measurement error_sum: float = 0.0 if previous_time is None: previous_error = 0.0 previous_time = current_time i_result = 0.0 error_sum = error * 0.008 # sensor sampling number approximation. error_sum = error_sum + (error * (current_time - previous_time)) p_result = p_value * error i_result = i_value * error_sum d_result = d_value * ((error - previous_error) / (current_time - previous_time)) pid_result = offset_value + p_result + i_result + d_result previous_error = error previous_time = current_time return pid_result def calculate_new_servo_pos(): ... def send_data_to_servo(): KIT.servo[0].angle = 180 # Set angle