from adafruit_hcsr04 import HCSR04 as hcsr04 # Ultrasound sensor import board # General board pin mapper from adafruit_servokit import ServoKit # Servo libraries for PWM driver board import adafruit_pcf8591.pcf8591 as PCF # AD/DA converter board for potentiometer from adafruit_pcf8591.analog_in import AnalogIn # Analogue in pin library from adafruit_pcf8591.analog_out import AnalogOut # Analogue out pin library import statistics as st # Mean and median calculations import csv # CSV handling from datetime import datetime # Date and time formatting from time import sleep # Sleep/pause import pandas as pd # Variables to control sensor TRIGGER_PIN = board.D4 # GPIO pin xx ECHO_PIN = board.D17 # GPIO pin xx PIN_TIMEOUT: float = 0.1 # Timeout for echo wait -- don't change RUN_TIMEOUT: float = 0.0 # Sleep time in function MIN_DISTANCE: int = 4 # Minimum sensor distance to be considered valid (1 on bar) MAX_DISTANCE: int = 39 # Maximum sensor distance to be considered valid (35 on bar) # Variables to control servo KIT = ServoKit(channels=16) # Define the type of board (8, 16) MIN_PULSE: int = 400 # Defines angle 80, for current PID setup MAX_PULSE: int = 2500 # Defines angle 100, for current PID setup KIT.servo[0].set_pulse_width_range(MIN_PULSE, MAX_PULSE) # Variables to control logging. LOG: bool = True # Log data to files SCREEN: bool = True # Log data to screen DEBUG: bool = True # More data to display TWIN_MODE: bool = False # Control the number of samples for single distance measurement (average from burst) MAX_SAMPLES: int = 10 # Control the potentiometer # Description: # POT_MIN = min_scaled: 0.012890821698329136 (0.01V) # POT_MAX = max_scaled: 3.28715953307393000 (3.29V) # POT_RNG = range_scaled: 3.274268711375600864 (3.28V) -> POT_MAX - POT_MIN # POT_ARM = usable_arm_range: 35cm # POT_PCM = 35 / 3.274268711375600864 = 10.689409784359341315326937965383 -> POT_ARM / POT_RNG PCF_VAL: int = 65535 POT_MIN: float = 0.012890821698329136 POT_MAX: float = 3.287159533073930000 POT_RNG: float = 3.274268711375600864 POT_ARM: int = 35 POT_PCM: float = 10.689409784359341315326937965383 POT_INT: float = 0.1 # Pin control potentiometer board i2c = board.I2C() pcf = PCF.PCF8591(i2c) pcf_in_0 = AnalogIn(pcf, PCF.A0) pcf_out = AnalogOut(pcf, PCF.OUT) pcf_out.value = PCF_VAL # Variables to control PID values (PID formula tweaks) p_value: float = 2.0 i_value: float = 0.0 d_value: float = 0.0 # Initial variables, used in pid_calculations() i_result: float = 0.0 previous_time: float = 0.0 previous_error: float = 0.0 # Variables to assist pid_calculations() current_time: float = 0 integral: float = 0 # Init array, used in read_distance_sensor() sample_array: list = [] # Error sum array error_sum_array: list = [] error_sum_counter: int = 0 error_sum_max: int = 100 # Digital twin previous_speed:float = 0.0 start_loop = True previous_measurement: float = 0.0 # Write data to any of the logfiles def log_data(data_file: str, data_line: str, remark: str|None): log_stamp: str = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3] with open("pid-balancer_" + "time_file.txt", "r") as time_file: file_stamp: str = time_file.readline() with open("pid-balancer_" + data_file + "_data_" + file_stamp + ".csv", "a") as data_file: data_writer = csv.writer(data_file) data_writer.writerow([log_stamp,data_line, remark]) def read_distance_sensor(): # Do a burst (MAX_SAMPLES) of measurements, filter out the obvious wrong ones (too short or to long a distance) # Return the mean timestamp and median distance. with hcsr04(trigger_pin=TRIGGER_PIN, echo_pin=ECHO_PIN, timeout=PIN_TIMEOUT) as sonar: samples: int = 0 max_samples: int = MAX_SAMPLES timestamp_last: float = 0.0 timestamp_first: float = 0.0 while samples != max_samples: sleep(RUN_TIMEOUT) try: distance: float = sonar.distance if MIN_DISTANCE < distance < MAX_DISTANCE: log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None print("Distance_in_range: ", distance) if SCREEN else None sample_array.append(distance) if samples == 0: timestamp_first = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]) if samples == max_samples - 1: timestamp_last = float(datetime.strftime(datetime.now(), '%Y%m%d%H%M%S.%f')[:-3]) timestamp_first_float: float = float(timestamp_first) timestamp_last_float: float = float(timestamp_last) samples: int = samples + 1 median_distance: float = st.median(sample_array) mean_timestamp: float = st.mean([timestamp_first_float, timestamp_last_float]) print("Distance_median: ", median_distance) if SCREEN else None print("Timestamp_mean: ", mean_timestamp) if SCREEN else None else: log_data(data_file="sensor", data_line=str(distance), remark="") if LOG else None print("Distance_out_of_range: ", round(distance, 4)) if SCREEN else None except RuntimeError: log_data(data_file="sensor", data_line="999.999", remark="Timeout") if LOG and DEBUG else None print("Distance_timed_out") if SCREEN else None return median_distance, mean_timestamp def read_setpoint(): while True: raw_value: int = pcf_in_0.value scaled_value: float = (raw_value / PCF_VAL) * pcf_in_0.reference_voltage log_line = str(scaled_value) + "," + str(raw_value) + "," + str("angle") log_data(data_file="potmeter", data_line=log_line, remark="") if LOG else None cm_rounded: int = int(round(scaled_value * POT_PCM, 0)) if SCREEN: print('Scaled_rounded = ' , round(scaled_value, 4), ' CM_rounded= ', cm_rounded) print('Scaled_raw= ' , scaled_value, ' CM_raw= ', int(scaled_value * POT_PCM)) sleep(POT_INT) return cm_rounded def calculate_acceleration(): position_1, timestamp_1 = read_distance_sensor() position_2, timestamp_2 = read_distance_sensor() position_3, timestamp_3 = read_distance_sensor() initial_velocity: float = (position_2 - position_1) / (timestamp_2 - timestamp_1) final_velocity: float = ((position_3 - position_2) / (timestamp_3 - timestamp_2)) acceleration: float = (final_velocity - initial_velocity) / (timestamp_3 - timestamp_1) print(initial_velocity, " ", final_velocity, " ", acceleration) if SCREEN else None data_line: str = str(initial_velocity) + ',' + str(final_velocity) + ',' + str(acceleration) log_data(data_file="acceleration", data_line=data_line, remark="") if LOG else None def pid_calculations(setpoint): global i_result, previous_time, previous_error # Can not be annotated with :float, because variables are global. global error_sum_counter, error_sum_array # counter for error_sum_array and error_sum_array itself offset_value: int = 0 if TWIN_MODE: measurement, measurement_time = digital_twin() else: measurement, measurement_time = read_distance_sensor() error = setpoint - measurement if previous_time is None: previous_error = 0.0 previous_time = measurement_time i_result = 0.0 error_sum_array[error_sum_counter] = (error * (measurement_time - previous_time)) p_result = p_value * error i_result = i_value * sum(error_sum_array) d_result = d_value * ((error - previous_error) / (measurement_time - previous_time)) pid_result = offset_value + p_result + i_result + d_result previous_error = error previous_time = measurement_time log_line = str(p_result) + "," + str(i_result) + "," + str(d_result) + "," + str(pid_result) log_data(data_file="pid", data_line=log_line, remark="") if LOG else None if SCREEN: print("P_result: ", p_result) print("D_result: ", d_result) print("I_result: ", i_result) print("PID_result: ", pid_result) if error_sum_counter <= error_sum_max: error_sum_counter = error_sum_counter + 1 else: error_sum_counter = 0 return pid_result def control_server_angle(angle): KIT.servo[0].angle = angle # Set angle log_line = str(angle) log_data(data_file="servo", data_line=log_line, remark="") if LOG else None print(angle) if SCREEN else None def digital_twin(pid_angle): global start_loop measurement_time = float(datetime.strftime(datetime.now(),'%Y%m%d%H%M%S.%f')[:-3]) if start_loop: delta_t = measurement_time - (measurement_time - 0.002) start_loop = False else: delta_t = measurement_time - previous_time twin_data = pd.read_csv('twin_data_file.csv') twin_data.set_index('Arm angle', inplace=True) acceleration = twin_data.loc[pid_angle, 'Acceleration'] # previous acceleration to speed. new_speed = previous_speed + (acceleration*delta_t) measurement = new_speed * delta_t + previous_measurement print(measurement) print(new_speed) print(previous_speed) return measurement, measurement_time